

Matrices in Computer Graphics

Ting Yip
Math 308A

12/3/2001

Ting Yip
Math 308A

 2

Abstract

In this paper, we discuss and explore the basic matrix operation such as translations,
rotations, scaling and we will end the discussion with parallel and perspective view.
These concepts commonly appear in video game graphics.

Introduction

The use of matrices in computer graphics is widespread. Many industries like
architecture, cartoon, automotive that were formerly done by hand drawing now are done
routinely with the aid of computer graphics. Video gaming industry, maybe the earliest
industry to rely heavily on computer graphics, is now representing rendered polygon in 3-
Dimensions.

 In video gaming industry, matrices are major mathematic tools to construct and
manipulate a realistic animation of a polygonal figure. Examples of matrix operations
include translations, rotations, and scaling. Other matrix transformation concepts like
field of view, rendering, color transformation and projection. Understanding of matrices
is a basic necessity to program 3D video games.

Homogeneous Coordinate Transformation

Points (x, y, z) in R3 can be identified as a homogeneous vector () 





→ 1,,,,,,

h
z

h
y

h
x

hzyx with

h ≠ 0 on the plane in R4. If we convert a 3D point to a 4D vector, we can represent a
transformation to this point with a 4 x 4 matrix.

The last coordinate is a scalar term.

Graphics

(Screenshots taken from Operation Flashpoint)

Polygon figures like these use many flat or conic surfaces to represent a realistic human soldier.

Ting Yip
Math 308A

 3

Transformation of Points

In general, transformation of points can be represented by this equation:

 Transformed Point = Transformation Matrix × Original Point

In a more explicit case, a plane spanned by two vectors can be represented by this
equation:

























×=
















































×=

×

y
x

fc
eb
da

Matrixtion Transforma

f

e
d

,

c

b
a

spanMatrixtion Transforma

Plane Original Matrix tion Transforma = Plane dTransforme

Representation of a plane using matrices

EXAMPLE
Point (2, 5, 6) in R3 a Vector (2, 5, 6, 1) or (4, 10, 12, 2) in R4

NOTE
It is possible to apply transformation to 3D points without converting them to 4D
vectors. The tradeoff is that transformation can be done with a single matrix
multiplication after the convertion of points to vectors. (More on this after
Translation.)

x and y are scalars

















c
b

a
















+

















f
e

d

y
c
b

a

x

















f

e
d

Ting Yip
Math 308A

 4

Translation

A translation basically means adding a vector to a point, making a point transforms to a
new point. This operation can be simplified as a translation in homogeneous coordinate
(x, y, z, 1) to (x + tx, y + ty, z + tz, 1). This transformation can be computed using a single
matrix multiplication.

Translation Matrix for Homogeneous Coordinates in R4 is given by this matrix:



















=

1000
100
010
001

),,(
z

y

x

zyx t
t
t

tttT

Given any point (x, y, z) in R3, the following will give the translated point.



















+
+
+

=





































111000
100
010
001

z

y

x

z

y

x

tz
ty
tx

z
y
x

t
t
t

For a sphere to move to a new position, we can think of this as all the points on the sphere move to the
translated sphere by adding the blue vector to each point.

Ting Yip
Math 308A

 5

Graphics

(Screenshots taken from Operation Flashpoint)
In video game, objects like airplane that doesn’t change its shape dynamically (rigid body) uses

Translation to move across the sky. All the points that make up the plane have to be translated by the
same vector or the image of the plane will appear to be stretched.

NOTE

















+
+
+

=















+

















kz
jy
ix

k
j
i

z
y
x

If we have more than one point, we would have to apply this addition to every point.

















++
++

++

















+
+

+

=















+

































+
+

+

=















+

































kzkz
jyjy

ixix

kz
jy

ix

k
j

i

z
y

x

kz
jy

ix

k
j

i

z
y

x

zz
yy

xx

21

21

21

2

2

2

2

2

2

1

1

1

1

1

1

21

21

21

& aa

With homogeneous coordinate, we can use a single matrix multiplication.

















++
++
++

→



















++
++
++

=





































kzkz
jyjy
ixix

kzkz
jyjy
ixix

zz
yy
xx

k
j
i

21

21

21

21

21

21

21

21

21

11111000
100
010
001

As we can see, linear system is easier to solve with homogenenous coordinate
transformation.

Ting Yip
Math 308A

 6

Scaling

Scaling of any dimension requires one of the diagonal values of the transformation matrix
to equal to a value other than one. This operation can be viewed as a scaling in
homogeneous coordinate (x, y, z, 1) to (sxx, syy, szz, 1). Values for sx, sy, sz greater than
one will enlarge the objects, values between zero and one will shrink the objects, and
negative values will rotate the object and change the size of the objects.

Scaling Matrix for Homogeneous Coordinates in R4 is given by this matrix:



















=

1000
000
000
000

),,(
z

y

x

zyx s
s

s

sssS

Given any point (x, y, z) in R3, the following will give the scaled point.



















=





































111000
000
000
000

zs
ys
xs

z
y
x

s
s

s

z

y

x

z

y

x

If we want to scale the hexahedron proportionally, we apply the same scaling matrix to each point that

makes up the hexahedron.

Ting Yip
Math 308A

 7

Rotations

Rotations are defined with respect to an axis. In 3 dimensions, the axis of rotation needs
to be specified.

A rotation about the x axis is represented by this matrix:



















+
−

=




































−

=



















⇒


















−

=

1
cossin
sincos

11000
0cossin0
0sincos0
0001

1

)(

1000
0cossin0
0sincos0
0001

)(
θθ
θθ

θθ
θθ

θ
θθ
θθ

θ
zy
zy

x

z
y
x

z
y
x

RR xx

A rotation about the y axis is represented by this matrix:

A rotation about the z axis is represented by this matrix:


















+
−

=



































 −

=



















⇒

















 −

=

1

cossin
sincos

11000
0100
00cossin
00sincos

1

)(

1000
0100
00cossin
00sincos

)(
z

yx
yx

z
y
x

z
y
x

RR zz

θθ
θθ

θθ
θθ

θ
θθ
θθ

θ



















+−

+

=





































−
=



















⇒



















−
=

1
cossin

sincos

11000
0cos0sin
0010
0sin0cos

1

)(

1000
0cos0sin
0010
0sin0cos

)(
θθ

θθ

θθ

θθ

θ
θθ

θθ

θ
zx

y
zx

z
y
x

z
y
x

RR yy

3D rotation can be viewed as replacing x1 and x2 with two axes.

Ting Yip
Math 308A

 8

EXAMPLE

This wire polygon cube is
represented by a matrix that contains
its vertex point in every column.



















11111111
99779779
33331111
75757755

Rotated Cube

Original Cube

If we want to rotate this cube with respect to the x axis by









3
π

:































































−








11111111
99779779
33331111
75757755

1000

0
3

cos
3

sin0

0
3

sin
3

cos0

0001

ππ

ππ

=













5 5 7 7 5 7 5 7

 −
1
2

9
2 3 −

1
2

7
2 3 −

1
2

7
2 3 −

1
2

9
2 3 −

3
2

7
2 3 −

3
2

7
2 3 −

3
2

9
2 3 −

3
2

9
2 3

 +
9
2

1
2

3 +
7
2

1
2

3 +
7
2

1
2

3 +
9
2

1
2

3 +
7
2

3
2

3 +
7
2

3
2

3 +
9
2

3
2

3 +
9
2

3
2

3

1 1 1 1 1 1 1 1

Ting Yip
Math 308A

 9

Projection Transformation

Even though we programmed objects in 3-Dimensions, we have to actually view the
objects as 2-Dimensions on our computer screens. In another word, we want to transform
points in R3 to points in R2.

Parallel Projection

In parallel projection, we simply ignore the z-coordinate. This operation can be viewed
as a transformation in homogeneous coordinate (x, y, z, 1) to (x, y, 0, 1).

Parallel Matrix for Homogeneous Coordinates in R4 is given by this matrix:



















=

1000
0000
0010
0001

P

Given any point (x, y, z) in R3, the following will give the parallel projected point.



















=





































1
0

11000
0000
0010
0001

y
x

z
y
x

Perspective Projection

Video game tends to use perspective projections over other projections to represent a real
world, where parallelism is not preserved. Perspective Projections is the way we see
things, i.e. bigger when the object is closer.

http://mane.mech.virginia.edu/~engr160/Graphics/Perspective.html

Ting Yip
Math 308A

 10

Important :
1) Translate the eye to the Origin
2) Rotation until direction of eye is toward the negative z-axis

D is the distance of the eye to the view plane

z is the distance of the eye to the object
(Note: not your “eyes” but the eyes of the computer polygon person)

Perspective Matrix for Homogenous Coordinates in R4 is given by this matrix:





















0
1

00

0000
0010
0001

d

Given any point (x, y, z) in R3, the following will give the parallel projected point.























⇒





















=







































1
0

0

10
1

00

0000
0010
0001

d
z

y

d
z

x

d
z

y
x

z
y
x

d

(Note: This matrix transformation does not give pixel coordinate on the monitor. The transformed
coordinate is with respect to the object’s coordinate. We have to translate the object’s coordinate to pixel

coordinate on the monitor.)

Eye

Object

Perspective Projection of the cube

Ting Yip
Math 308A

 11

Conclusion

I chose to do this project to show my curiosity in math and computer science. I had the
chance to talk about video games and math that are often overlooked as unrelated. As
shown in this project, Linear Algebra is extremely useful for video game graphics. Using
matrices to manipulate points is a common mathematical approach in video game
graphics.

Graphics

(Screenshots taken from Operation Flashpoint)

In sniping mode, the eye moves closer to the object.

Ting Yip
Math 308A

 12

References

Dam, Andries. “Introduction to Computer Graphics”

http://www.cs.brown.edu/courses/cs123/lectures/Viewing3.pdf

Holzschuch, Nicola. “Projections and Perspectives”

http://www.loria.fr/~holzschu/cours/HTML/ICG/Resources/Projections/index.html

Lay, David. Linear Algebra and its Applications. Second Edition.

Runwal, Rachana. “Perspective Projection”

http://mane.mech.virginia.edu/~engr160/Graphics/Perspective.html

