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Abstract 
 
In this paper, we discuss and explore the basic matrix operation such as translations, 
rotations, scaling and we will end the discussion with parallel and perspective view.  
These concepts commonly appear in video game graphics. 
 
Introduction 
 
The use of matrices in computer graphics is widespread.  Many industries like 
architecture, cartoon, automotive that were formerly done by hand drawing now are done 
routinely with the aid of computer graphics.  Video gaming industry, maybe the earliest 
industry to rely heavily on computer graphics, is now representing rendered polygon in 3-
Dimensions.  
 
 In video gaming industry, matrices are major mathematic tools to construct and 
manipulate a realistic animation of a polygonal figure.  Examples of matrix operations 
include translations, rotations, and scaling.  Other matrix transformation concepts like 
field of view, rendering, color transformation and projection.  Understanding of matrices 
is a basic necessity to program 3D video games.  
 
 
 
 
  
 

     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Homogeneous Coordinate Transformation 

Points (x, y, z) in R3 can be identified as a homogeneous vector ( ) 





→ 1,,,,,,

h
z

h
y

h
x

hzyx with 

h ≠ 0 on the plane in R4.  If we convert a 3D point to a 4D vector, we can represent a 
transformation to this point with a 4 x 4 matrix.  

The last coordinate is a scalar term. 

Graphics 
 

    
(Screenshots taken from Operation Flashpoint) 

Polygon figures like these use many flat or conic surfaces to represent a realistic human soldier. 
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Transformation of Points 
 
In general, transformation of points can be represented by this equation: 
 
 Transformed Point = Transformation Matrix ×  Original Point 
 
In a more explicit case, a plane spanned by two vectors can be represented by this 
equation: 
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Representation of a plane using matrices 
 
 

EXAMPLE 
Point (2, 5, 6) in R3  a  Vector (2, 5, 6, 1) or  (4, 10, 12, 2) in R4 

 

NOTE 
It is possible to apply transformation to 3D points without converting them to 4D 
vectors.  The tradeoff is that transformation can be done with a single matrix 
multiplication after the convertion of points to vectors.  (More on this after 
Translation.) 

x and y are scalars 
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Translation 
 
A translation basically means adding a vector to a point, making a point transforms to a 
new point.  This operation can be simplified as a translation in homogeneous coordinate 
(x, y, z, 1) to (x + tx, y + ty, z + tz, 1).  This transformation can be computed using a single 
matrix multiplication. 
 
Translation Matrix for Homogeneous Coordinates in R4 is given by this matrix: 
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Given any point (x, y, z) in R3, the following will give the translated point. 
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For a sphere to move to a new position, we can think of this as all the points on the sphere move to the 
translated sphere by adding the blue vector to each point. 
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Graphics 

 
 

(Screenshots taken from Operation Flashpoint) 
In video game, objects like airplane that doesn’t change its shape dynamically (rigid body) uses 

Translation to move across the sky.  All the points that make up the plane have to be translated by the 
same vector or the image of the plane will appear to be stretched. 

 

NOTE 
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If we have more than one point, we would have to apply this addition to every point.  
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With homogeneous coordinate, we can use a single matrix multiplication. 
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As we can see, linear system is easier to solve with homogenenous coordinate 
transformation. 
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Scaling 
 
Scaling of any dimension requires one of the diagonal values of the transformation matrix 
to equal to a value other than one.  This operation can be viewed as a scaling in 
homogeneous coordinate (x, y, z, 1) to (sxx, syy, szz, 1).  Values for sx, sy, sz greater than 
one will enlarge the objects, values between zero and one will shrink the objects, and 
negative values will rotate the object and change the size of the objects. 
 
Scaling Matrix for Homogeneous Coordinates in R4 is given by this matrix: 
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Given any point (x, y, z) in R3, the following will give the scaled point. 
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If we want to scale the hexahedron proportionally, we apply the same scaling matrix to each point that 

makes up the hexahedron. 
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Rotations  
 
Rotations are defined with respect to an axis.  In 3 dimensions, the axis of rotation needs 
to be specified.   
 
A rotation about the x axis is represented by this matrix: 
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A rotation about the y axis is represented by this matrix: 

A rotation about the z axis is represented by this matrix: 
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3D rotation can be viewed as replacing x1 and x2 with two axes.   
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EXAMPLE 
 

 

This wire polygon cube is 
represented by a matrix that contains 
its vertex point in every column. 
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







3
π

:  

 































































−








11111111
99779779
33331111
75757755

   

1000

0
3

cos
3

sin0

0
3

sin
3

cos0

0001

ππ

ππ

= 













5 5 7 7 5 7 5 7

 − 
1
2

9
2 3  − 

1
2

7
2 3  − 

1
2

7
2 3  − 

1
2

9
2 3  − 

3
2

7
2 3  − 

3
2

7
2 3  − 

3
2

9
2 3  − 

3
2

9
2 3

 + 
9
2

1
2

3  + 
7
2

1
2

3  + 
7
2

1
2

3  + 
9
2

1
2

3  + 
7
2

3
2

3  + 
7
2

3
2

3  + 
9
2

3
2

3  + 
9
2

3
2

3

1 1 1 1 1 1 1 1

 



Ting Yip 
Math 308A 

 9 

 
 
Projection Transformation 
 
Even though we programmed objects in 3-Dimensions, we have to actually view the 
objects as 2-Dimensions on our computer screens.  In another word, we want to transform 
points in R3 to points in R2. 
 
Parallel Projection 
 
In parallel projection, we simply ignore the z-coordinate.  This operation can be viewed 
as a transformation in homogeneous coordinate (x, y, z, 1) to (x, y, 0, 1).   
 
Parallel Matrix for Homogeneous Coordinates in R4 is given by this matrix: 
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Given any point (x, y, z) in R3, the following will give the parallel projected point. 
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Perspective Projection 
 
Video game tends to use perspective projections over other projections to represent a real 
world, where parallelism is not preserved.  Perspective Projections is the way we see 
things, i.e. bigger when the object is closer. 
 

 
 

http://mane.mech.virginia.edu/~engr160/Graphics/Perspective.html 
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Important : 
1) Translate the eye to the Origin 
2) Rotation until direction of eye is toward the negative z-axis 
 

 
D is the distance of the eye to the view plane 

z is the distance of the eye to the object 
(Note:  not your “eyes” but the eyes of the computer polygon person) 

 
Perspective Matrix for Homogenous Coordinates in R4 is given by this matrix: 
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Given any point (x, y, z) in R3, the following will give the parallel projected point. 
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(Note:  This matrix transformation does not give pixel coordinate on the monitor.  The transformed 
coordinate is with respect to the object’s coordinate.  We have to translate the object’s coordinate to pixel 

coordinate on the monitor.) 
 
 
 

Eye 

Object 

 

Perspective Projection of the cube 
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Conclusion 
 
I chose to do this project to show my curiosity in math and computer science.  I had the 
chance to talk about video games and math that are often overlooked as unrelated.  As 
shown in this project, Linear Algebra is extremely useful for video game graphics.  Using 
matrices to manipulate points is a common mathematical approach in video game 
graphics.   
 
 
 
 
 
 
 
 
 
 
 
 

Graphics 

 

 
(Screenshots taken from Operation Flashpoint) 

In sniping mode, the eye moves closer to the object. 



Ting Yip 
Math 308A 

 12 

References 
 
Dam, Andries.  “Introduction to Computer Graphics” 

http://www.cs.brown.edu/courses/cs123/lectures/Viewing3.pdf  
 
Holzschuch, Nicola.  “Projections and Perspectives”  

http://www.loria.fr/~holzschu/cours/HTML/ICG/Resources/Projections/index.html 
 
Lay, David.  Linear Algebra and its Applications.  Second Edition.   
 
Runwal, Rachana.  “Perspective Projection” 

http://mane.mech.virginia.edu/~engr160/Graphics/Perspective.html 
 
 


