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Abstract

In this paper, we discuss and explore the basic matrix operation such as trandations,
rotations, scaling and we will end the discussion with parallel and perspective view.
These concepts commonly appear in video game graphics.

I ntroduction

The use of matrices in computer graphics is widespread. Many industries like
architecture, cartoon, automotive that were formerly done by hand drawing now are done
routinely with the aid of computer graphics. Video gaming industry, maybe the earliest
industry to rely heavily on computer graphics, is now representing rendered polygon in 3-
Dimensions.

In video gaming industry, matrices are mgjor mathematic tools to construct and
manipulate a realistic animation of a polygonal figure. Examples of matrix operations
include trandlations, rotations, and scaling. Other matrix transformation concepts like
field of view, rendering, color transformation and projection. Understanding of matrices
is a basic necessity to program 3D video games.

Graphics

(Screenshots taken from Operation Flashpoint)
Polygon figures like these use many flat or conic surfaces to represent arealistic human soldier.

The last coordinate is a scalar terrr.
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h1 0 ontheplanein R*. If we convert a3D point to a4D vector, we can represent a
transformation to this point witha 4 x 4 matrix.

Homogeneous Coor dinate Transfor mation

Points (%, y, 2) in R®can be identified as a homogeneous vector (x,y,zh)®
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EXAMPLE
Point (2, 5, 6) in R® — Vector (2, 5,6, 1) or (4,10, 12,2) inR*

NOTE

It is possible to apply transformation to 3D points without converting them to 4D
vectors. The tradeoff is that transformation can be done with a single matrix
multiplication after the convertion of points to vectors. (More on this after
Trandlation.)

Transfor mation of Points

In general, transformation of points can be represented by this equation:
Transformed Point = Transformation Matrix = Origina Point
In amore explicit case, a plane spanned by two vectors can be represented by this

equation:
Trandforme d Plane = Trandorma tion Matrix = Origind Plane

. . Ta.ué.u
= Transforma tion Matrix = spani Y Set;
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Representation of a plane using matrices
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A trandation basically means adding a vector to a point, making a point transforms to a
new point. This operation can be simplified as a trandation in homogeneous coordinate
X, ¥,z I)to (X +t,y+ty,z+1t,1). Thistransformation can be computed using asingle

matrix multiplication.

Translation Matrix for Homogeneous Coordinatesin R*is given by this matrix:

Given any point (X, y, 2) in R®, the following will give the translated point.
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For a sphere to move to a new position, we can think of thisas all the points on the sphere moveto the

translated sphere by adding the blue vector to each point.
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Graphics

(Screenshots taken from Operation Flashpoint)
In video game, objects like airplane that doesn’t change its shape dynamically (rigid body) uses
Translation to move across the sky. All the points that make up the plane have to be translated by the
same vector or the image of the plane will appear to be stretched.

NOTE
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If we have more than one point, we would have to apply this addition to every point.

&, 21‘1 é&u éiu eX1+Iu U éiU eX2+Iu éX1+i X+

€ é U eu é e U é.u_=e U

éyl yzuHeylu e] ey1+Ju eyzu e]u ey2+JuHey1+J y2+Ju

6z zH 6zH &H 6z+kH 6zH &g Ez+kH Ez+k z+kg

With homogeneous coordinate, we can usea single matrix multiplication.
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Aswe can seeg, linear system is easier to solve with homogenenous coordinate

transformation.
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Scaling

Scaling of any dimension requires one of the diagonal values of the transformation matrix
to equal to avaue other than one. This operation can be viewed as a scaling in
homogeneous coordinate (X, y, z, 1) to (scX, Sy, &z, 1). Vauesfor s, s,, s, greater than
one will enlarge the objects, values between zero and one will shrink the objects, and
negative values will rotate the object and change the size of the objects.

Scaling Matrix for Homogeneous Coordinates in R* is given by this matrix:

s, 0 0 Ou
& a
0 s, 0 oY
e u
S(s,.S,S,) = 80 0 s, o
S0 0 0 1

Given any point (X, y, z) in R®, the following will give the scaled point.
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If we want to scale the hexahedron proportionally, we apply the same scaling matrix to each point that
makes up the hexahedron.
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Rotations

Rotations are defined with respect to an axis. In 3 dimensions, the axis of rotation needs
to be specified.

A rotation about the x axis is represented by this matrix:
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A rotation about the y axisis represented by this matrix:
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A rotation about the z axis is represented by this matrix:
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3D rotation can be viewed as replacing x and % with two axes.
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Thiswire polygon cubeis
represented by amatrix that contains = EXAMPLE

Its vertex point in every column. If we want to rotate this cube with respect to the x axis by
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Projection Transformation

Even though we programmed objects in 3-Dimensions, we have to actually view the
objects as 2-Dimensions on our computer screens. In another word, we want to transform
pointsin R to pointsin R?.

Parallel Projection

In parallel projection, we simply ignore the zcoordinate. This operation can be viewed
as a transformation in homogeneous coordinate (X, vy, z, 1) to (x, y, 0, 1).

Parallel Matrix for Homogeneous Coordinates in R*is given by this matrix:

& 0 0 Ou
: G
p=e’ 1 9 %
& 0 0 0d
% 0 0 1§

Given any point (x, y, z) in R3, the following will give the parallel projected point.
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Perspective Projection

Video game tends to use perspective projections over other projections to represent a real
world, where parallelism is not preserved. Perspective Projections is the way we see
things, i.e. bigger when the object is closer.

—Eye (Station Fodr)

Frajection Flane
i Brogector

http://mane.mech.virginia.edu/~engr160/Graphics/Perspective.html
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Important :

1) Trandate the eye to the Origin
2) Rotation until direction of eye is toward the negative zaxis

Object +v
(x.y.z) z .
D,
Z ¥ (0.0.0) Lz
/ | Eye
(xD/z, yD/z) View
Plane
A J

At
D isthe distance of the eyeto the view plane

zisthe distance of the eye to the object
(Note: not your “eyes’ but the eyes of the computer polygon person)

Perspective Matrix for Homogenous Coordinatesin R* is given by this matrix:
€l 0 0 Ou

Given any point (x, y, z) in R3, the following will give the parallel projected point.
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(Note: This matrix transformation doesnot give pixel coordinate on the monitor. The transformed
coordinate is with respect to the object’ s coordinate. We have to translate the object’ s coordinate to pixel
coordinate on the monitor.)
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Graphics

(Screenshots taken from Operation Flashpoint)
In sniping mode, the eye moves closer to the object.

Conclusion

| chose to do this project to show my curiosity in math and computer science. | had the
chance to talk about video games and math that are often overlooked as unrelated. As
shown in this project, Linear Algebra is extremely useful for video game graphics. Using
matrices to manipulate points is a common mathematical approach in video game

graphics.
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